Nuprl Lemma : cardinality-le_functionality
∀[T:Type]. ∀n:ℕ+. ∀[m:ℕ]. {|T| ≤ n 
⇒ |T| ≤ m} supposing n ≤ m
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
guard: {T}
, 
cardinality-le: |T| ≤ n
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
surject: Surj(A;B;f)
Lemmas referenced : 
less_than'_wf, 
cardinality-le_wf, 
nat_plus_subtype_nat, 
le_wf, 
nat_wf, 
nat_plus_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
false_wf, 
int_seg_properties, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
surject_wf, 
intformle_wf, 
int_formula_prop_le_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
universeEquality, 
dependent_pairFormation, 
because_Cache, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
functionExtensionality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}[m:\mBbbN{}].  \{|T|  \mleq{}  n  {}\mRightarrow{}  |T|  \mleq{}  m\}  supposing  n  \mleq{}  m
Date html generated:
2018_05_21-PM-00_39_32
Last ObjectModification:
2018_05_19-AM-06_45_12
Theory : list_1
Home
Index