Nuprl Lemma : cardinality-le_functionality

[T:Type]. ∀n:ℕ+. ∀[m:ℕ]. {|T| ≤  |T| ≤ m} supposing n ≤ m


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] guard: {T} le: A ≤ B all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat: nat_plus: + prop: guard: {T} cardinality-le: |T| ≤ n exists: x:A. B[x] subtype_rel: A ⊆B int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) lelt: i ≤ j < k bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b less_than': less_than'(a;b) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top surject: Surj(A;B;f)
Lemmas referenced :  less_than'_wf cardinality-le_wf nat_plus_subtype_nat le_wf nat_wf nat_plus_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int_seg_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf false_wf int_seg_properties nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf surject_wf intformle_wf int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination extract_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry applyEquality universeEquality dependent_pairFormation because_Cache unionElimination equalityElimination independent_isectElimination functionExtensionality natural_numberEquality dependent_set_memberEquality independent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}[m:\mBbbN{}].  \{|T|  \mleq{}  n  {}\mRightarrow{}  |T|  \mleq{}  m\}  supposing  n  \mleq{}  m



Date html generated: 2018_05_21-PM-00_39_32
Last ObjectModification: 2018_05_19-AM-06_45_12

Theory : list_1


Home Index