Nuprl Lemma : comparison-sort-permutation
∀T:Type. (valueall-type(T) ⇒ (∀cmp:comparison(T). ∀L:T List.  permutation(T;comparison-sort(cmp;L);L)))
Proof
Definitions occuring in Statement : 
comparison-sort: comparison-sort(cmp;L), 
comparison: comparison(T), 
permutation: permutation(T;L1;L2), 
list: T List, 
valueall-type: valueall-type(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
comparison-sort: comparison-sort(cmp;L), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
eager-accum: eager-accum(x,a.f[x; a];y;l), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
append: as @ bs, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
permutation_wf, 
eager-accum_wf, 
insert-no-combine_wf, 
list-valueall-type, 
append_wf, 
append-nil, 
subtype_rel_list, 
top_wf, 
list_ind_cons_lemma, 
valueall-type-has-valueall, 
evalall-reduce, 
comparison_wf, 
valueall-type_wf, 
cons_wf, 
nil_wf, 
insert-no-combine-permutation, 
permutation-nil, 
permutation_functionality_wrt_permutation, 
permutation_weakening, 
permutation-rotate, 
append_functionality_wrt_permutation, 
append_assoc, 
list_ind_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
dependent_functionElimination, 
callbyvalueReduce, 
universeEquality, 
productElimination
Latex:
\mforall{}T:Type
    (valueall-type(T)  {}\mRightarrow{}  (\mforall{}cmp:comparison(T).  \mforall{}L:T  List.    permutation(T;comparison-sort(cmp;L);L)))
 Date html generated: 
2016_05_14-PM-02_44_11
 Last ObjectModification: 
2015_12_26-PM-02_41_17
Theory : list_1
Home
Index