Nuprl Lemma : cycle-closed

n:ℕ. ∀x:ℕn. ∀L:ℕList.  (x ∈ L)  (cycle(L) x ∈ L) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} squash: T prop: lelt: i ≤ j < k and: P ∧ Q le: A ≤ B true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  no_repeats_witness int_seg_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base l_member_wf squash_wf true_wf list_wf apply-cycle-member length_wf iff_weakening_equal eq_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_eq_int select_member false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermSubtract_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__le itermAdd_wf int_term_value_add_lemma no_repeats_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination productElimination instantiate cumulativity because_Cache independent_isectElimination sqequalRule intEquality lambdaEquality dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality imageElimination universeEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed unionElimination equalityElimination applyLambdaEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbN{}n.  \mforall{}L:\mBbbN{}n  List.    (x  \mmember{}  L)  {}\mRightarrow{}  (cycle(L)  x  \mmember{}  L)  supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2017_04_17-AM-08_17_43
Last ObjectModification: 2017_02_27-PM-04_40_28

Theory : list_1


Home Index