Nuprl Lemma : decidable__list-match

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b]))  (∀as:A List. ∀bs:B List.  Dec(list-match(as;bs;a,b.R[a;b]))))


Proof




Definitions occuring in Statement :  list-match: list-match(L1;L2;a,b.R[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q list-match: list-match(L1;L2;a,b.R[a; b]) sq_exists: x:A [B[x]] list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]) cand: c∧ B not: ¬A subtype_rel: A ⊆B int_seg: {i..j-} uimplies: supposing a false: False guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T ge: i ≥  nat: so_lambda: λ2y.t[x; y] rev_implies:  Q
Lemmas referenced :  list_wf all_wf decidable_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf int_seg_wf length_wf btrue_neq_bfalse l_member_wf inject_wf not_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf length_wf_nat nat_properties list-match_wf list-match-aux_wf decidable_functionality decidable__list-match-aux
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality independent_pairFormation setElimination rename dependent_set_memberFormation productElimination intEquality natural_numberEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination because_Cache productEquality functionExtensionality dependent_functionElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidEquality imageElimination dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(list-match(as;bs;a,b.R[a;b]))))



Date html generated: 2018_05_21-PM-00_48_12
Last ObjectModification: 2018_05_19-AM-06_51_01

Theory : list_1


Home Index