Nuprl Lemma : imax-list-strict-lb

[L:ℤ List]. ∀[a:ℤ].  uiff(imax-list(L) < a;(∀b∈L.b < a)) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_all: (∀x∈L.P[x]) length: ||as|| list: List less_than: a < b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: l_all: (∀x∈L.P[x]) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list_wf l_member_wf l_all_wf less_than_wf member-less_than int_seg_wf select_wf decidable__lt length_wf int_seg_properties int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt imax-list_wf decidable__le subtract_wf imax-list-lb
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction natural_numberEquality independent_isectElimination independent_pairFormation productElimination dependent_functionElimination because_Cache unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll lambdaFormation setElimination rename setEquality independent_pairEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[a:\mBbbZ{}].    uiff(imax-list(L)  <  a;(\mforall{}b\mmember{}L.b  <  a))  supposing  0  <  ||L||



Date html generated: 2016_05_14-PM-01_41_50
Last ObjectModification: 2016_01_15-AM-08_23_50

Theory : list_1


Home Index