Nuprl Lemma : imax-list_functionality
∀[L,L':ℤ List].  (imax-list(L) = imax-list(L') ∈ ℤ) supposing (set-equal(ℤ;L;L') and 0 < ||L||)
Proof
Definitions occuring in Statement : 
set-equal: set-equal(T;x;y)
, 
imax-list: imax-list(L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
l_subset: l_subset(T;as;bs)
, 
set-equal: set-equal(T;x;y)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
cons: [a / b]
, 
false: False
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
Lemmas referenced : 
list_wf, 
length_wf, 
less_than_wf, 
set-equal_wf, 
imax-list-subset, 
l_member_wf, 
equal_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
nat_wf, 
length_wf_nat, 
nil_member, 
cons_member, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
non_neg_length, 
decidable__le, 
hd_wf, 
btrue_neq_bfalse, 
nil_wf, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_cons_lemma, 
null_nil_lemma, 
hd_member, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int
Rules used in proof : 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
intEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
lambdaFormation, 
minusEquality, 
lambdaEquality, 
applyEquality, 
independent_pairFormation, 
addEquality, 
rename, 
setElimination, 
inlFormation, 
voidEquality, 
hypothesis_subsumption, 
promote_hyp, 
voidElimination, 
imageElimination, 
unionElimination, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation
Latex:
\mforall{}[L,L':\mBbbZ{}  List].    (imax-list(L)  =  imax-list(L'))  supposing  (set-equal(\mBbbZ{};L;L')  and  0  <  ||L||)
Date html generated:
2017_09_29-PM-05_57_52
Last ObjectModification:
2017_07_31-PM-02_07_47
Theory : list_1
Home
Index