Nuprl Lemma : implies-equiv-props

L:ℙ List+((∀i:ℕ||L|| 1. (L[i]  L[i 1]))  (last(L)  hd(L))  equiv-props(L))


Proof




Definitions occuring in Statement :  equiv-props: equiv-props(L) last: last(L) select: L[n] listp: List+ length: ||as|| hd: hd(l) int_seg: {i..j-} prop: all: x:A. B[x] implies:  Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] listp: List+ prop: uimplies: supposing a or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] subtract: m ge: i ≥  le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) true: True not: ¬A false: False cons: [a b] bfalse: ff int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] uiff: uiff(P;Q) subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: so_apply: x[s] guard: {T} last: last(L) cand: c∧ B equiv-props: equiv-props(L) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  last_wf listp_properties list-cases null_nil_lemma length_of_nil_lemma stuck-spread istype-base istype-void product_subtype_list null_cons_lemma length_of_cons_lemma hd_wf int_seg_wf subtract_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf subtype_rel_self itermAdd_wf int_term_value_add_lemma listp_wf istype-less_than primrec-wf2 less_than_wf nat_properties istype-nat select0 istype-le add-associates add-swap add-commutes zero-add int_seg_subtype_nat istype-false reduce_hd_cons_lemma subtract-add-cancel decidable__equal_int intformeq_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_minus_lemma squash_wf le_wf list_wf istype-universe minus-add minus-minus minus-one-mul add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  Error :universeIsType,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality setElimination rename hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination unionElimination baseClosed Error :isect_memberEquality_alt,  voidElimination productElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption because_Cache imageElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality independent_pairFormation pointwiseFunctionality equalityTransitivity equalitySymmetry baseApply closedConclusion applyEquality addEquality Error :setIsType,  functionEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hyp_replacement productEquality imageMemberEquality multiplyEquality Error :inhabitedIsType

Latex:
\mforall{}L:\mBbbP{}  List\msupplus{}.  ((\mforall{}i:\mBbbN{}||L||  -  1.  (L[i]  {}\mRightarrow{}  L[i  +  1]))  {}\mRightarrow{}  (last(L)  {}\mRightarrow{}  hd(L))  {}\mRightarrow{}  equiv-props(L))



Date html generated: 2019_06_20-PM-01_50_24
Last ObjectModification: 2019_03_26-AM-11_01_01

Theory : list_1


Home Index