Nuprl Lemma : implies-equiv-props
∀L:ℙ List+. ((∀i:ℕ||L|| - 1. (L[i] 
⇒ L[i + 1])) 
⇒ (last(L) 
⇒ hd(L)) 
⇒ equiv-props(L))
Proof
Definitions occuring in Statement : 
equiv-props: equiv-props(L)
, 
last: last(L)
, 
select: L[n]
, 
listp: A List+
, 
length: ||as||
, 
hd: hd(l)
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
listp: A List+
, 
prop: ℙ
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
bfalse: ff
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
guard: {T}
, 
last: last(L)
, 
cand: A c∧ B
, 
equiv-props: equiv-props(L)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
last_wf, 
listp_properties, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
istype-void, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
hd_wf, 
int_seg_wf, 
subtract_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
subtype_rel_self, 
itermAdd_wf, 
int_term_value_add_lemma, 
listp_wf, 
istype-less_than, 
primrec-wf2, 
less_than_wf, 
nat_properties, 
istype-nat, 
select0, 
istype-le, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
int_seg_subtype_nat, 
istype-false, 
reduce_hd_cons_lemma, 
subtract-add-cancel, 
decidable__equal_int, 
intformeq_wf, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
int_term_value_minus_lemma, 
squash_wf, 
le_wf, 
list_wf, 
istype-universe, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
because_Cache, 
imageElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
applyEquality, 
addEquality, 
Error :setIsType, 
functionEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hyp_replacement, 
productEquality, 
imageMemberEquality, 
multiplyEquality, 
Error :inhabitedIsType
Latex:
\mforall{}L:\mBbbP{}  List\msupplus{}.  ((\mforall{}i:\mBbbN{}||L||  -  1.  (L[i]  {}\mRightarrow{}  L[i  +  1]))  {}\mRightarrow{}  (last(L)  {}\mRightarrow{}  hd(L))  {}\mRightarrow{}  equiv-props(L))
Date html generated:
2019_06_20-PM-01_50_24
Last ObjectModification:
2019_03_26-AM-11_01_01
Theory : list_1
Home
Index