Nuprl Lemma : interpolate-list_wf

[T:Type]. ∀[f:T ⟶ T ⟶ T]. ∀[L:T List].  (interpolate-list(x,y.f[x;y];L) ∈ List) supposing value-type(T)


Proof




Definitions occuring in Statement :  interpolate-list: interpolate-list(x,y.f[x; y];L) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q interpolate-list: interpolate-list(x,y.f[x; y];L) nil: [] it: cons: [a b] decidable: Dec(P) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B has-value: (a)↓
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases nil_wf product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf cons_wf value-type-has-value istype-nat list_wf value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase callbyvalueReduce Error :isectIsTypeImplies,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].    (interpolate-list(x,y.f[x;y];L)  \mmember{}  T  List)  supposing  value-type(T)



Date html generated: 2019_06_20-PM-01_49_36
Last ObjectModification: 2019_02_17-PM-05_53_14

Theory : list_1


Home Index