Nuprl Lemma : l_all_exists_max

[A:Type]. ∀[R:A ⟶ ℤ ⟶ ℙ].
  ((∀x:A. ∀n,m:ℤ.  (R[x;n]  R[x;m] supposing n ≤ m))  (∀L:A List. ((∀x∈L.∃n:ℤR[x;n])  (∃n:ℤ(∀x∈L.R[x;n])))))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s1;s2] so_apply: x[s] uimplies: supposing a exists: x:A. B[x] top: Top subtype_rel: A ⊆B and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_term_value_constant_lemma int_formula_prop_and_lemma itermConstant_wf intformand_wf length_wf int_seg_properties select_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le imax_ub imax_wf cons_wf l_all_cons and_wf l_all_wf_nil l_all_nil le_wf isect_wf all_wf list_wf l_member_wf exists_wf l_all_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality intEquality applyEquality setElimination rename hypothesis setEquality independent_functionElimination because_Cache dependent_functionElimination cumulativity universeEquality dependent_pairFormation natural_numberEquality isect_memberEquality voidElimination voidEquality productElimination addLevel impliesFunctionality existsFunctionality productEquality independent_pairFormation independent_isectElimination inlFormation unionElimination int_eqEquality computeAll imageElimination inrFormation

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:A.  \mforall{}n,m:\mBbbZ{}.    (R[x;n]  {}\mRightarrow{}  R[x;m]  supposing  n  \mleq{}  m))
    {}\mRightarrow{}  (\mforall{}L:A  List.  ((\mforall{}x\mmember{}L.\mexists{}n:\mBbbZ{}.  R[x;n])  {}\mRightarrow{}  (\mexists{}n:\mBbbZ{}.  (\mforall{}x\mmember{}L.R[x;n])))))



Date html generated: 2016_05_14-PM-02_45_46
Last ObjectModification: 2016_01_15-AM-07_35_48

Theory : list_1


Home Index