Nuprl Lemma : l_all_exists_max
∀[A:Type]. ∀[R:A ⟶ ℤ ⟶ ℙ].
  ((∀x:A. ∀n,m:ℤ.  (R[x;n] 
⇒ R[x;m] supposing n ≤ m)) 
⇒ (∀L:A List. ((∀x∈L.∃n:ℤ. R[x;n]) 
⇒ (∃n:ℤ. (∀x∈L.R[x;n])))))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_constant_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformand_wf, 
length_wf, 
int_seg_properties, 
select_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
imax_ub, 
imax_wf, 
cons_wf, 
l_all_cons, 
and_wf, 
l_all_wf_nil, 
l_all_nil, 
le_wf, 
isect_wf, 
all_wf, 
list_wf, 
l_member_wf, 
exists_wf, 
l_all_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
cumulativity, 
universeEquality, 
dependent_pairFormation, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
addLevel, 
impliesFunctionality, 
existsFunctionality, 
productEquality, 
independent_pairFormation, 
independent_isectElimination, 
inlFormation, 
unionElimination, 
int_eqEquality, 
computeAll, 
imageElimination, 
inrFormation
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:A.  \mforall{}n,m:\mBbbZ{}.    (R[x;n]  {}\mRightarrow{}  R[x;m]  supposing  n  \mleq{}  m))
    {}\mRightarrow{}  (\mforall{}L:A  List.  ((\mforall{}x\mmember{}L.\mexists{}n:\mBbbZ{}.  R[x;n])  {}\mRightarrow{}  (\mexists{}n:\mBbbZ{}.  (\mforall{}x\mmember{}L.R[x;n])))))
Date html generated:
2016_05_14-PM-02_45_46
Last ObjectModification:
2016_01_15-AM-07_35_48
Theory : list_1
Home
Index