Nuprl Lemma : length-concat-lower-bound
∀[ll:Top List+ List]. (||ll|| ≤ ||concat(ll)||)
Proof
Definitions occuring in Statement : 
listp: A List+
, 
length: ||as||
, 
concat: concat(ll)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
le: A ≤ B
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
listp: A List+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
subtract: n - m
Lemmas referenced : 
le_wf, 
length-concat, 
iff_weakening_equal, 
less_than'_wf, 
length_wf, 
top_wf, 
concat_wf, 
listp_wf, 
list_wf, 
l_sum-lower-bound, 
map_wf, 
non_neg_length, 
nat_wf, 
length_wf_nat, 
map_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
l_all_iff, 
l_member_wf, 
select-map, 
subtype_rel_list, 
map-length, 
and_wf, 
equal_wf, 
less_than_wf, 
lelt_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
select_wf, 
nat_properties, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
intEquality, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
addLevel, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis, 
instantiate, 
cumulativity, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
minusEquality
Latex:
\mforall{}[ll:Top  List\msupplus{}  List].  (||ll||  \mleq{}  ||concat(ll)||)
Date html generated:
2017_04_17-AM-08_40_46
Last ObjectModification:
2017_02_27-PM-05_01_04
Theory : list_1
Home
Index