Nuprl Lemma : length-concat-lower-bound

[ll:Top List+ List]. (||ll|| ≤ ||concat(ll)||)


Proof




Definitions occuring in Statement :  listp: List+ length: ||as|| concat: concat(ll) list: List uall: [x:A]. B[x] top: Top le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q le: A ≤ B not: ¬A false: False prop: all: x:A. B[x] listp: List+ ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] nat: so_apply: x[s] l_member: (x ∈ l) cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k sq_type: SQType(T) less_than': less_than'(a;b) cons: [a b] uiff: uiff(P;Q) sq_stable: SqStable(P) subtract: m
Lemmas referenced :  le_wf length-concat iff_weakening_equal less_than'_wf length_wf top_wf concat_wf listp_wf list_wf l_sum-lower-bound map_wf non_neg_length nat_wf length_wf_nat map_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf l_all_iff l_member_wf select-map subtype_rel_list map-length and_wf equal_wf less_than_wf lelt_wf subtype_base_sq set_subtype_base int_subtype_base select_wf nat_properties listp_properties list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis natural_numberEquality sqequalRule imageMemberEquality hypothesisEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality intEquality setElimination rename unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll setEquality lambdaFormation dependent_set_memberEquality addLevel hyp_replacement applyLambdaEquality levelHypothesis instantiate cumulativity promote_hyp hypothesis_subsumption addEquality minusEquality

Latex:
\mforall{}[ll:Top  List\msupplus{}  List].  (||ll||  \mleq{}  ||concat(ll)||)



Date html generated: 2017_04_17-AM-08_40_46
Last ObjectModification: 2017_02_27-PM-05_01_04

Theory : list_1


Home Index