Nuprl Lemma : length-one-iff
∀[T:Type]. ∀[L:T List].
  uiff(||L|| = 1 ∈ ℤ;(∀[x,y:T].  (x = y ∈ T) supposing ((y ∈ L) and (x ∈ L))) ∧ no_repeats(T;L) ∧ 0 < ||L||)
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
cons: [a / b]
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
subtract: n - m
Lemmas referenced : 
l_member_wf, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
no_repeats_witness, 
member-less_than, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
no_repeats_wf, 
istype-less_than, 
length_wf, 
list_wf, 
istype-universe, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
no_repeats_cons, 
cons_wf, 
cons_member, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
select_wf, 
nat_properties, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_base_sq, 
no_repeats_nil, 
satisfiable-full-omega-tt, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
length-one-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
dependent_functionElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
Error :equalityIstype, 
applyEquality, 
intEquality, 
baseClosed, 
sqequalBase, 
Error :productIsType, 
Error :isectIsType, 
instantiate, 
universeEquality, 
lemma_by_obid, 
lambdaFormation, 
computeAll, 
lambdaEquality, 
dependent_pairFormation, 
rename, 
voidEquality, 
isect_memberEquality, 
hypothesis_subsumption, 
promote_hyp, 
cumulativity, 
imageElimination, 
Error :inlFormation_alt, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
setElimination, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    uiff(||L||  =  1;(\mforall{}[x,y:T].    (x  =  y)  supposing  ((y  \mmember{}  L)  and  (x  \mmember{}  L)))  \mwedge{}  no\_repeats(T;L)  \mwedge{}  0  <  ||L||)
Date html generated:
2019_06_20-PM-01_27_33
Last ObjectModification:
2019_03_06-AM-11_18_26
Theory : list_1
Home
Index