Nuprl Lemma : length_concat

[T:Type]. ∀[ll:T List List].  (||concat(ll)|| = Σ(||ll[i]|| i < ||ll||) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) select: L[n] length: ||as|| concat: concat(ll) list: List uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T so_apply: x[s] concat: concat(ll) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) ge: i ≥  uiff: uiff(P;Q) true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  list_induction list_wf equal_wf length_wf concat_wf sum_wf length_wf_nat select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf reduce_nil_lemma length_of_nil_lemma stuck-spread base_wf length_of_cons_lemma concat-cons squash_wf true_wf length_append subtype_rel_list top_wf add_nat_wf false_wf le_wf nat_wf nat_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma cons_wf non_neg_length iff_weakening_equal subtype_base_sq int_subtype_base sum_split lelt_wf sum1 select-cons-hd decidable__equal_int subtract_wf itermSubtract_wf int_term_value_subtract_lemma select-cons-tl add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality intEquality because_Cache setElimination rename independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination baseClosed lambdaFormation applyEquality equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis dependent_set_memberEquality addEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion imageMemberEquality universeEquality instantiate functionEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].    (||concat(ll)||  =  \mSigma{}(||ll[i]||  |  i  <  ||ll||))



Date html generated: 2017_04_17-AM-08_50_25
Last ObjectModification: 2017_02_27-PM-05_07_32

Theory : list_1


Home Index