Nuprl Lemma : list_append_singleton_ind

[T:Type]. ∀[Q:(T List) ⟶ ℙ].  (Q[[]]  (∀ys:T List. ∀x:T.  (Q[ys]  Q[ys [x]]))  {∀zs:T List. Q[zs]})


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top squash: T true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B
Lemmas referenced :  all_wf list_wf append_wf cons_wf nil_wf equal-wf-T-base nat_wf length_wf_nat int_subtype_base set_wf less_than_wf primrec-wf2 equal_wf length_zero nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf list_decomp_reverse decidable__lt intformless_wf int_formula_prop_less_lemma le_wf squash_wf true_wf length_append subtype_rel_list top_wf subtype_rel_self iff_weakening_equal length-singleton non_neg_length decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma length-append length_wf subtract_wf add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality applyEquality Error :functionIsType,  Error :universeIsType,  universeEquality rename setElimination baseApply closedConclusion baseClosed intEquality natural_numberEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality because_Cache dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation hyp_replacement imageElimination cumulativity imageMemberEquality instantiate dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    (Q[[]]  {}\mRightarrow{}  (\mforall{}ys:T  List.  \mforall{}x:T.    (Q[ys]  {}\mRightarrow{}  Q[ys  @  [x]]))  {}\mRightarrow{}  \{\mforall{}zs:T  List.  Q[zs]\})



Date html generated: 2019_06_20-PM-01_45_38
Last ObjectModification: 2018_09_26-PM-02_50_58

Theory : list_1


Home Index