Nuprl Lemma : list_append_singleton_ind
∀[T:Type]. ∀[Q:(T List) ⟶ ℙ].  (Q[[]] 
⇒ (∀ys:T List. ∀x:T.  (Q[ys] 
⇒ Q[ys @ [x]])) 
⇒ {∀zs:T List. Q[zs]})
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
Lemmas referenced : 
all_wf, 
list_wf, 
append_wf, 
cons_wf, 
nil_wf, 
equal-wf-T-base, 
nat_wf, 
length_wf_nat, 
int_subtype_base, 
set_wf, 
less_than_wf, 
primrec-wf2, 
equal_wf, 
length_zero, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
list_decomp_reverse, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
le_wf, 
squash_wf, 
true_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
subtype_rel_self, 
iff_weakening_equal, 
length-singleton, 
non_neg_length, 
decidable__le, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
length-append, 
length_wf, 
subtract_wf, 
add-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
rename, 
setElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
hyp_replacement, 
imageElimination, 
cumulativity, 
imageMemberEquality, 
instantiate, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    (Q[[]]  {}\mRightarrow{}  (\mforall{}ys:T  List.  \mforall{}x:T.    (Q[ys]  {}\mRightarrow{}  Q[ys  @  [x]]))  {}\mRightarrow{}  \{\mforall{}zs:T  List.  Q[zs]\})
Date html generated:
2019_06_20-PM-01_45_38
Last ObjectModification:
2018_09_26-PM-02_50_58
Theory : list_1
Home
Index