Nuprl Lemma : member-update-alist1
∀[A,T:Type].
  ∀eq:EqDecider(T). ∀x:T. ∀L:(T × A) List. ∀z:A. ∀f:A ⟶ A. ∀y:T.
    ((y ∈ map(λp.(fst(p));update-alist(eq;L;x;z;v.f[v]))) 
⇐⇒ (y ∈ map(λp.(fst(p));L)) ∨ (y = x ∈ T))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
update-alist: update-alist(eq;L;x;z;v.f[v])
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
update-alist: update-alist(eq;L;x;z;v.f[v])
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
deq: EqDecider(T)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
eqof: eqof(d)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
not: ¬A
, 
guard: {T}
, 
false: False
Lemmas referenced : 
list_induction, 
all_wf, 
iff_wf, 
l_member_wf, 
map_wf, 
update-alist_wf, 
or_wf, 
equal_wf, 
list_wf, 
list_ind_nil_lemma, 
map_nil_lemma, 
map_cons_lemma, 
list_ind_cons_lemma, 
deq_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
and_wf, 
cons_wf, 
pi1_wf, 
cons_member, 
bnot_wf, 
not_wf, 
eqof_wf, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
false_wf, 
member_singleton, 
nil_member, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
productElimination, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
universeEquality, 
setElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_pairFormation, 
inlFormation, 
addLevel, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
levelHypothesis, 
independent_pairEquality, 
orFunctionality, 
promote_hyp, 
unionElimination, 
inrFormation, 
equalityElimination, 
independent_isectElimination, 
impliesFunctionality, 
allFunctionality
Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:(T  \mtimes{}  A)  List.  \mforall{}z:A.  \mforall{}f:A  {}\mrightarrow{}  A.  \mforall{}y:T.
        ((y  \mmember{}  map(\mlambda{}p.(fst(p));update-alist(eq;L;x;z;v.f[v])))  \mLeftarrow{}{}\mRightarrow{}  (y  \mmember{}  map(\mlambda{}p.(fst(p));L))  \mvee{}  (y  =  x))
Date html generated:
2017_04_14-AM-09_24_59
Last ObjectModification:
2017_02_27-PM-03_59_28
Theory : list_1
Home
Index