Nuprl Lemma : no_repeats_concat

[T:Type]. ∀[ll:T List List].
  uiff(no_repeats(T;concat(ll));∀i:ℕ||ll||
                                  (no_repeats(T;ll[i])
                                  ∧ (∀j:{j:ℕ||ll||| ¬(i j ∈ ℤ)} . ∀k:ℕ||ll[i]||.  (ll[i][k] ∈ ll[j])))))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) l_member: (x ∈ l) select: L[n] length: ||as|| concat: concat(ll) list: List int_seg: {i..j-} uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] int_seg: {i..j-} guard: {T} sq_stable: SqStable(P) squash: T lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] l_all: (∀x∈L.P[x]) pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) iff: ⇐⇒ Q subtype_rel: A ⊆B rev_implies:  Q le: A ≤ B cand: c∧ B l_member: (x ∈ l) nat: ge: i ≥  true: True
Lemmas referenced :  l_member_wf select_wf list_wf int_seg_properties length_wf sq_stable__not equal_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf set_wf not_wf no_repeats_witness l_all_wf no_repeats_wf pairwise_wf2 l_disjoint_wf all_wf iff_weakening_uiff concat_wf no_repeats-concat-iff uiff_wf lelt_wf select_member intformeq_wf int_formula_prop_eq_lemma subtype_rel_sets equal-wf-T-base set_subtype_base int_subtype_base less_than_transitivity2 le_weakening2 nat_properties squash_wf true_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction lambdaFormation sqequalHypSubstitution productElimination thin hypothesis independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality because_Cache setElimination rename independent_isectElimination natural_numberEquality intEquality sqequalRule imageMemberEquality baseClosed imageElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality computeAll independent_pairEquality setEquality productEquality instantiate addLevel applyEquality universeEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].
    uiff(no\_repeats(T;concat(ll));\mforall{}i:\mBbbN{}||ll||
                                                                    (no\_repeats(T;ll[i])
                                                                    \mwedge{}  (\mforall{}j:\{j:\mBbbN{}||ll|||  \mneg{}(i  =  j)\}  .  \mforall{}k:\mBbbN{}||ll[i]||.
                                                                              (\mneg{}(ll[i][k]  \mmember{}  ll[j])))))



Date html generated: 2016_10_21-AM-10_30_22
Last ObjectModification: 2016_07_12-AM-05_44_35

Theory : list_1


Home Index