Nuprl Lemma : no_repeats-concat-iff

[T:Type]. ∀[ll:T List List].
  uiff(no_repeats(T;concat(ll));(∀l∈ll.no_repeats(T;l)) ∧ (∀l1,l2∈ll.  l_disjoint(T;l1;l2)))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) concat: concat(ll) list: List uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uiff: uiff(P;Q) and: P ∧ Q prop: uimplies: supposing a all: x:A. B[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q concat: concat(ll) top: Top true: True iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) subtype_rel: A ⊆B less_than: a < b squash: T cand: c∧ B
Lemmas referenced :  false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff length_of_cons_lemma pairwise-cons cons_wf l_all-cons concat-cons no_repeats_append_iff append_wf iff_weakening_uiff l_disjoint-concat uiff_wf l_all_wf_nil length_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties length_of_nil_lemma select_wf pairwise-nil l_all-nil true_wf and_wf no_repeats_witness no_repeats_nil nil_wf reduce_nil_lemma l_disjoint_wf pairwise_wf2 l_member_wf l_all_wf concat_wf no_repeats_wf list_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality isectEquality cumulativity because_Cache lambdaFormation setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry addLevel independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll applyEquality universeEquality instantiate imageElimination addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].
    uiff(no\_repeats(T;concat(ll));(\mforall{}l\mmember{}ll.no\_repeats(T;l))  \mwedge{}  (\mforall{}l1,l2\mmember{}ll.    l\_disjoint(T;l1;l2)))



Date html generated: 2016_05_14-PM-02_55_06
Last ObjectModification: 2016_01_15-AM-07_33_09

Theory : list_1


Home Index