Nuprl Lemma : not-assert-bl-all

[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (¬↑(∀x∈L.P[x])_b ⇐⇒ (∃x∈L. ¬↑P[x]))


Proof




Definitions occuring in Statement :  bl-all: (∀x∈L.P[x])_b l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q not: ¬A false: False decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a l_all: (∀x∈L.P[x]) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T l_exists: (∃x∈L. P[x])
Lemmas referenced :  length_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf assert-bl-all set_wf decidable__assert decidable__not list-subtype decidable__l_exists list_wf bool_wf l_exists_wf l_member_wf bl-all_wf assert_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setEquality hypothesis independent_functionElimination voidElimination functionEquality universeEquality dependent_functionElimination cumulativity equalityTransitivity equalitySymmetry unionElimination productElimination independent_isectElimination because_Cache setElimination rename natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.    (\mneg{}\muparrow{}(\mforall{}x\mmember{}L.P[x])\_b  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  \mneg{}\muparrow{}P[x]))



Date html generated: 2016_05_14-PM-02_10_53
Last ObjectModification: 2016_01_15-AM-08_00_23

Theory : list_1


Home Index