Nuprl Lemma : pigeon-hole-implies2

n:ℕ
  ∀[m:ℕ]
    ∀f:ℕn ⟶ ℕm. ∀g:ℕn ⟶ ℕm. ∃i:ℕn. (∃j:ℕ[((f i) (g j) ∈ ℤ)]) supposing Inj(ℕn;ℕm;g) supposing Inj(ℕn;ℕm;f) 
    supposing m < n


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: inject: Inj(A;B;f) implies:  Q prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q int_seg: {i..j-} less_than: a < b less_than': less_than'(a;b) true: True squash: T lelt: i ≤ j < k guard: {T} sq_exists: x:A [B[x]] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  member-less_than equal_wf int_seg_wf pigeon-hole-implies-ext nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf less_than_wf lelt_wf subtract_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma decidable__lt lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf sq_stable__equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot inject_wf nat_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis multiplyEquality natural_numberEquality independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination axiomEquality because_Cache applyEquality dependent_set_memberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation lessCases baseClosed equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality imageElimination productElimination functionExtensionality equalityElimination promote_hyp instantiate cumulativity functionEquality applyLambdaEquality dependent_set_memberFormation

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[m:\mBbbN{}]
        \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m
            \mforall{}g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m.  \mexists{}i:\mBbbN{}n.  (\mexists{}j:\mBbbN{}n  [((f  i)  =  (g  j))])  supposing  Inj(\mBbbN{}n;\mBbbN{}m;g)  supposing  Inj(\mBbbN{}n;\mBbbN{}m;f) 
        supposing  m  <  2  *  n



Date html generated: 2019_06_20-PM-01_32_21
Last ObjectModification: 2018_08_20-PM-09_32_22

Theory : list_1


Home Index