Nuprl Lemma : polyconst-val

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[k:ℤ].  (polyconst(n;k)@l k)


Proof




Definitions occuring in Statement :  polyconst: polyconst(n;k) poly-int-val: p@l length: ||as|| list: List nat: uall: [x:A]. B[x] set: {x:A| B[x]}  int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  has-value: (a)↓ uiff: uiff(P;Q) select: L[n] sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) subtract: m bfalse: ff so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q true: True squash: T btrue: tt ifthenelse: if then else fi  poly-int-val: p@l le: A ≤ B decidable: Dec(P) cons: [a b] or: P ∨ Q polyconst: polyconst(n;k) so_apply: x[s] guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf int-value-type value-type-has-value false_wf add-is-int-iff exp0_lemma spread_cons_lemma null_cons_lemma poly_int_val_cons_cons iff_weakening_equal equal_wf poly_int_val_nil_cons subtype_base_sq decidable__equal_int null_nil_lemma nat_wf list_subtype_base equal-wf-base-T int_subtype_base length_of_nil_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__lt non_neg_length length_wf le_weakening2 length_of_cons_lemma product_subtype_list list-cases less_than_irreflexivity less_than_transitivity1 equal-wf-base list_wf set_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  multiplyEquality addEquality pointwiseFunctionality dependent_set_memberEquality sqleReflexivity callbyvalueReduce imageMemberEquality imageElimination cumulativity instantiate int_eqReduceFalseSq int_eqReduceTrueSq equalitySymmetry equalityTransitivity productElimination hypothesis_subsumption promote_hyp unionElimination because_Cache applyEquality baseClosed closedConclusion baseApply sqequalAxiom independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[k:\mBbbZ{}].    (polyconst(n;k)@l  \msim{}  k)



Date html generated: 2017_04_20-AM-07_10_34
Last ObjectModification: 2017_04_17-PM-02_10_15

Theory : list_1


Home Index