Nuprl Lemma : sorted-by-append

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀as,bs:T List.  (sorted-by(R;as bs) ⇐⇒ sorted-by(R;as) ∧ sorted-by(R;bs) ∧ (∀a∈as.(∀b∈bs.R b)))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_all: (∀x∈L.P[x]) append: as bs list: List uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sorted-by: sorted-by(R;L) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T int_seg: {i..j-} prop: so_lambda: λ2x.t[x] uimplies: supposing a top: Top guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] rev_implies:  Q ge: i ≥  le: A ≤ B subtype_rel: A ⊆B subtract: m cand: c∧ B sq_type: SQType(T) l_all: (∀x∈L.P[x]) true: True
Lemmas referenced :  int_seg_wf length_wf all_wf append_wf select_wf length-append int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma false_wf l_all_wf l_member_wf list_wf non_neg_length lelt_wf select_append_front iff_weakening_equal add-member-int_seg2 le_weakening2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-associates minus-one-mul add-mul-special zero-mul add-zero squash_wf le_wf less_than_wf subtract-is-int-iff and_wf equal_wf subtype_base_sq int_subtype_base select_append_back true_wf add-subtract-cancel length_append subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis cumulativity because_Cache lambdaEquality applyEquality functionExtensionality independent_isectElimination isect_memberEquality voidElimination voidEquality addEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed productEquality setEquality functionEquality universeEquality dependent_set_memberEquality independent_functionElimination hyp_replacement imageMemberEquality applyLambdaEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}as,bs:T  List.
        (sorted-by(R;as  @  bs)  \mLeftarrow{}{}\mRightarrow{}  sorted-by(R;as)  \mwedge{}  sorted-by(R;bs)  \mwedge{}  (\mforall{}a\mmember{}as.(\mforall{}b\mmember{}bs.R  a  b)))



Date html generated: 2017_04_17-AM-07_43_27
Last ObjectModification: 2017_02_27-PM-04_16_51

Theory : list_1


Home Index