Nuprl Lemma : sublist-iff-sub-co-list
∀[T:Type]. ∀L2,L1:T List.  (L1 ⊆ L2 
⇐⇒ sub-co-list(T;L1;L2))
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
sub-co-list: sub-co-list(T;s1;s2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
list: T List
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
co-nil: ()
, 
nil: []
, 
false: False
, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
list_wf, 
iff_wf, 
sublist_wf, 
sub-co-list_wf, 
istype-universe, 
nil_wf, 
co-nil_wf, 
nil-sub-co-list, 
nil-sublist, 
istype-void, 
cons_sublist_nil, 
cons-sub-co-list-nil, 
cons_wf, 
cons_sublist_cons, 
cons-sub-co-list-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
functionEquality, 
hypothesis, 
setElimination, 
rename, 
Error :universeIsType, 
independent_functionElimination, 
Error :functionIsType, 
because_Cache, 
Error :productIsType, 
dependent_functionElimination, 
instantiate, 
universeEquality, 
independent_pairFormation, 
Error :isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
Error :inhabitedIsType, 
productElimination, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
Error :unionIsType, 
Error :equalityIstype, 
unionElimination, 
Error :inlFormation_alt, 
Error :inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}L2,L1:T  List.    (L1  \msubseteq{}  L2  \mLeftarrow{}{}\mRightarrow{}  sub-co-list(T;L1;L2))
Date html generated:
2019_06_20-PM-01_23_00
Last ObjectModification:
2019_01_02-PM-05_42_20
Theory : list_1
Home
Index