Nuprl Lemma : sublist-iff-sub-co-list

[T:Type]. ∀L2,L1:T List.  (L1 ⊆ L2 ⇐⇒ sub-co-list(T;L1;L2))


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 sub-co-list: sub-co-list(T;s1;s2) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: list: List so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top subtype_rel: A ⊆B co-nil: () nil: [] false: False or: P ∨ Q
Lemmas referenced :  list_induction list_wf iff_wf sublist_wf sub-co-list_wf istype-universe nil_wf co-nil_wf nil-sub-co-list nil-sublist istype-void cons_sublist_nil cons-sub-co-list-nil cons_wf cons_sublist_cons cons-sub-co-list-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule Error :lambdaEquality_alt,  functionEquality hypothesis setElimination rename Error :universeIsType,  independent_functionElimination Error :functionIsType,  because_Cache Error :productIsType,  dependent_functionElimination instantiate universeEquality independent_pairFormation Error :isect_memberEquality_alt,  voidElimination applyEquality Error :inhabitedIsType,  productElimination promote_hyp equalityTransitivity equalitySymmetry Error :unionIsType,  Error :equalityIstype,  unionElimination Error :inlFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}L2,L1:T  List.    (L1  \msubseteq{}  L2  \mLeftarrow{}{}\mRightarrow{}  sub-co-list(T;L1;L2))



Date html generated: 2019_06_20-PM-01_23_00
Last ObjectModification: 2019_01_02-PM-05_42_20

Theory : list_1


Home Index