Nuprl Lemma : cons-sub-co-list-cons

[T:Type]
  ∀x1,x2:T. ∀L1,L2:colist(T).
    (sub-co-list(T;[x1 L1];[x2 L2]) ⇐⇒ ((x1 x2 ∈ T) ∧ sub-co-list(T;L1;L2)) ∨ sub-co-list(T;[x1 L1];L2))


Proof




Definitions occuring in Statement :  sub-co-list: sub-co-list(T;s1;s2) cons: [a b] colist: colist(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  cons: [a b] co-cons: [x L] uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q or: P ∨ Q sub-co-list: sub-co-list(T;s1;s2) exists: x:A. B[x] ext-eq: A ≡ B subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uimplies: supposing a nil: [] list-at: L1@L2 top: Top ifthenelse: if then else fi  bfalse: ff co-nil: () uiff: uiff(P;Q) false: False nat: decidable: Dec(P) not: ¬A guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  sub-co-list_wf co-cons_wf colist_wf istype-universe colist-ext nat_wf isaxiom_wf_listunion subtype_rel_b-union-left unit_wf2 axiom-listunion null_nil_lemma null_cons_lemma istype-void reduce_hd_cons_lemma reduce_tl_cons_lemma reduce_tl_nil_lemma subtype_rel_b-union-right non-axiom-listunion co-cons-not-co-nil decidable__equal_int co-cons_one_one list-at_wf subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-le list_at_nil2_lemma itermAdd_wf int_term_value_add_lemma eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :unionIsType,  Error :productIsType,  Error :equalityIstype,  Error :inhabitedIsType,  instantiate universeEquality productElimination promote_hyp hypothesis_subsumption applyEquality unionElimination equalityElimination productEquality independent_isectElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination rename equalityTransitivity equalitySymmetry independent_functionElimination setElimination natural_numberEquality int_eqReduceTrueSq int_eqReduceFalseSq Error :inlFormation_alt,  Error :dependent_pairFormation_alt,  Error :inrFormation_alt,  Error :dependent_set_memberEquality_alt,  approximateComputation Error :lambdaEquality_alt,  int_eqEquality addEquality cumulativity because_Cache intEquality minusEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x1,x2:T.  \mforall{}L1,L2:colist(T).
        (sub-co-list(T;[x1  /  L1];[x2  /  L2])
        \mLeftarrow{}{}\mRightarrow{}  ((x1  =  x2)  \mwedge{}  sub-co-list(T;L1;L2))  \mvee{}  sub-co-list(T;[x1  /  L1];L2))



Date html generated: 2019_06_20-PM-01_22_16
Last ObjectModification: 2019_01_02-PM-05_35_39

Theory : list_1


Home Index