Nuprl Lemma : integer-nth-root-ext

n:ℕ+. ∀x:ℕ.  (∃r:ℕ [((r^n ≤ x) ∧ x < (r 1)^n)])


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s1;s2] natrec: natrec genrec: genrec genrec-ap: genrec-ap integer-nth-root div_nat_induction rem_bounds_1 decidable__lt decidable__equal_int decidable__squash decidable__and decidable__less_than' decidable__int_equal decidable_functionality squash_elim sq_stable_from_decidable any: any x iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  integer-nth-root lifting-strict-int_eq istype-void strict4-decide lifting-strict-decide lifting-strict-less div_nat_induction rem_bounds_1 decidable__lt decidable__equal_int decidable__squash decidable__and decidable__less_than' decidable__int_equal decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}.    (\mexists{}r:\mBbbN{}  [((r\^{}n  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)\^{}n)])



Date html generated: 2019_06_20-PM-02_33_42
Last ObjectModification: 2019_04_15-PM-10_31_53

Theory : num_thy_1


Home Index