Nuprl Lemma : is_power_wf

[n:ℕ+]. ∀[x:ℤ].  (is_power(n;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is_power: is_power(n;z) nat_plus: + bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is_power: is_power(n;z) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False nat_plus: + int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} prop: or: P ∨ Q nat: decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff band: p ∧b q ifthenelse: if then else fi  bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void eq_int_wf remainder_wfa subtype_base_sq int_subtype_base nequal_wf bool_cases bool_subtype_base band_wf btrue_wf is-power_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le bfalse_wf eqff_to_assert bool_cases_sqequal bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality closedConclusion natural_numberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productElimination independent_isectElimination lessCases axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination setElimination rename Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality dependent_functionElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  sqequalBase Error :universeIsType,  minusEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality promote_hyp axiomEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbZ{}].    (is\_power(n;x)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-02_34_31
Last ObjectModification: 2019_03_19-AM-11_12_56

Theory : num_thy_1


Home Index