Nuprl Lemma : nth-better-fibs
∀n:ℕ. (s-nth(n;better-fibs()) = fib(n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
better-fibs: better-fibs(), 
fib: fib(n), 
s-nth: s-nth(n;s), 
nat: ℕ, 
all: ∀x:A. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
better-fibs: better-fibs(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
has-value: (a)↓, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
fib: fib(n), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
s-nth: s-nth(n;s), 
mk-stream: mk-stream(f;x), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
pi1: fst(t), 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
Lemmas referenced : 
nth-stream-map, 
nat_wf, 
mk-stream_wf, 
value-type-has-value, 
int-value-type, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
false_wf, 
product-valueall-type, 
set-valueall-type, 
int-valueall-type, 
stream-subtype, 
top_wf, 
testxxx_lemma, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
fib_wf, 
squash_wf, 
true_wf, 
add-zero, 
add-commutes, 
add-associates, 
zero-add, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-swap, 
add_functionality_wrt_le, 
le-add-cancel, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
product_subtype_base, 
int_subtype_base, 
set_subtype_base, 
decidable__equal_int, 
valueall-type-has-valueall, 
evalall-reduce, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
productEquality, 
because_Cache, 
lambdaEquality, 
productElimination, 
callbyvalueReduce, 
intEquality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
independent_pairEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
intWeakElimination, 
axiomEquality, 
equalityElimination, 
sqleReflexivity, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
minusEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
universeEquality
Latex:
\mforall{}n:\mBbbN{}.  (s-nth(n;better-fibs())  =  fib(n))
Date html generated:
2017_04_17-AM-09_49_23
Last ObjectModification:
2017_02_27-PM-05_45_45
Theory : num_thy_1
Home
Index