Nuprl Lemma : int_formula-subtype-base
int_formula() ⊆r Base
Proof
Definitions occuring in Statement : 
int_formula: int_formula()
, 
subtype_rel: A ⊆r B
, 
base: Base
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
intformless: (left "<" right)
, 
int_formula_size: int_formula_size(p)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
intformle: left "≤" right
, 
intformeq: left "=" right
, 
intformand: left "∧" right
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
intformor: left "or" right
, 
intformimplies: left "=>" right
, 
intformnot: "¬"form
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
less_than: a < b
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
le_wf, 
int_formula_size_wf, 
int_formula_wf, 
int_formula-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
int_term_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
add_nat_wf, 
nat_wf, 
sq_stable__le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-swap, 
add-commutes, 
set_subtype_base, 
int_subtype_base, 
add-is-int-iff, 
not-le-2, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
mul-distributes, 
mul-commutes, 
mul-associates, 
mul-swap, 
le-add-cancel-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
thin, 
isect_memberFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
imageMemberEquality, 
imageElimination, 
independent_pairFormation, 
voidEquality, 
intEquality, 
minusEquality, 
sqequalIntensionalEquality, 
multiplyEquality
Latex:
int\_formula()  \msubseteq{}r  Base
Date html generated:
2017_09_29-PM-05_55_51
Last ObjectModification:
2017_05_31-PM-02_46_26
Theory : omega
Home
Index