Nuprl Lemma : int_formula-subtype-base

int_formula() ⊆Base


Proof




Definitions occuring in Statement :  int_formula: int_formula() subtype_rel: A ⊆B base: Base
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] ext-eq: A ≡ B and: P ∧ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  intformless: (left "<right) int_formula_size: int_formula_size(p) pi1: fst(t) pi2: snd(t) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b intformle: left "≤right intformeq: left "=" right intformand: left "∧right sq_stable: SqStable(P) squash: T le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True intformor: left "or" right intformimplies: left "=>right intformnot: "form decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m top: Top so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf int_formula_size_wf int_formula_wf int_formula-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base int_term_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom add_nat_wf nat_wf sq_stable__le add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-swap add-commutes set_subtype_base int_subtype_base add-is-int-iff not-le-2 le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow mul-distributes mul-commutes mul-associates mul-swap le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut thin isect_memberFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache promote_hyp productElimination hypothesis_subsumption tokenEquality unionElimination equalityElimination instantiate cumulativity atomEquality baseApply closedConclusion baseClosed dependent_pairFormation dependent_set_memberEquality addEquality imageMemberEquality imageElimination independent_pairFormation voidEquality intEquality minusEquality sqequalIntensionalEquality multiplyEquality

Latex:
int\_formula()  \msubseteq{}r  Base



Date html generated: 2017_09_29-PM-05_55_51
Last ObjectModification: 2017_05_31-PM-02_46_26

Theory : omega


Home Index