Nuprl Lemma : select-int-vec-add

[as,bs:ℤ List]. ∀[i:ℕ].  as bs[i] as[i] bs[i] supposing i < ||as|| ∧ i < ||bs||


Proof




Definitions occuring in Statement :  int-vec-add: as bs select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q int-vec-add: as bs nil: [] it: select: L[n] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] cons: [a b] colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than: a < b bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b cand: c∧ B nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf length_wf nat_wf list_wf equal-wf-base list_subtype_base int_subtype_base list-cases nil_wf stuck-spread base_wf strictness-add-left product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf cons_wf colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel equal-wf-T-base decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes subtract_wf not-ge-2 less-iff-le minus-minus add-swap length_of_nil_lemma le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot minus-zero length_of_cons_lemma non_neg_length length_wf_nat select_wf le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul not-lt-2 omega-shadow mul-distributes mul-associates mul-commutes le-add-cancel-alt select-cons decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom productEquality intEquality because_Cache equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality unionElimination voidEquality productElimination promote_hyp hypothesis_subsumption instantiate cumulativity applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality equalityElimination dependent_pairFormation sqequalIntensionalEquality multiplyEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}].    as  +  bs[i]  \msim{}  as[i]  +  bs[i]  supposing  i  <  ||as||  \mwedge{}  i  <  ||bs||



Date html generated: 2017_04_14-AM-08_55_45
Last ObjectModification: 2017_02_27-PM-03_40_08

Theory : omega


Home Index