Nuprl Lemma : int_mod_ring_wf_field
∀[p:ℕ+]. int_mod_ring(p) ∈ Field{i} supposing prime(p)
Proof
Definitions occuring in Statement : 
int_mod_ring: int_mod_ring(n), 
prime: prime(a), 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
field: Field{i}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
field: Field{i}, 
subtype_rel: A ⊆r B, 
crng: CRng, 
rng: Rng, 
prop: ℙ, 
nat_plus: ℕ+, 
int_mod_ring: int_mod_ring(n), 
field_p: IsField(r), 
rng_car: |r|, 
pi1: fst(t), 
rng_zero: 0, 
pi2: snd(t), 
rng_one: 1, 
ring_divs: a | b in r, 
rng_times: *, 
infix_ap: x f y, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
int_mod: ℤ_n, 
quotient: x,y:A//B[x; y], 
false: False, 
eqmod: a ≡ b mod m, 
divides: b | a, 
exists: ∃x:A. B[x], 
prime: prime(a), 
assoced: a ~ b, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
guard: {T}, 
le: A ≤ B, 
less_than': less_than'(a;b), 
lelt: i ≤ j < k, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
int_mod_ring_wf, 
cdrng_subtype_crng, 
field_p_wf, 
prime_wf, 
nat_plus_wf, 
nequal_wf, 
int_mod_wf, 
int-subtype-int_mod, 
istype-int, 
eqmod_wf, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermMinus_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
one_divs_any, 
modulus-int_mod-nonzero, 
gcd-reduce-prime, 
modulus_wf_int_mod, 
divisors_bound, 
nat_plus_subtype_nat, 
int_seg_subtype_nat_plus, 
istype-false, 
divides_wf, 
int_seg_properties, 
intformle_wf, 
intformless_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
le_wf, 
quotient-member-eq, 
eqmod_equiv_rel, 
subtype_rel_self, 
mod-eqmod, 
eqmod_inversion, 
squash_wf, 
true_wf, 
modulus_functionality_wrt_eqmod, 
iff_weakening_equal, 
multiply_wf_int_mod, 
equal_wf, 
istype-universe, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
universeIsType, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
because_Cache, 
independent_pairFormation, 
lambdaFormation_alt, 
natural_numberEquality, 
equalityIsType4, 
baseClosed, 
pertypeElimination, 
productElimination, 
productIsType, 
inhabitedIsType, 
independent_functionElimination, 
dependent_pairFormation_alt, 
minusEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
baseApply, 
closedConclusion, 
intEquality, 
applyLambdaEquality, 
equalityIsType1, 
pointwiseFunctionalityForEquality, 
imageElimination, 
imageMemberEquality, 
instantiate, 
universeEquality, 
multiplyEquality, 
equalityIsType3
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  int\_mod\_ring(p)  \mmember{}  Field\{i\}  supposing  prime(p)
Date html generated:
2019_10_15-AM-11_38_23
Last ObjectModification:
2018_10_10-AM-11_03_17
Theory : general
Home
Index