Nuprl Lemma : int_mod_ring_wf
∀[n:ℕ+]. (int_mod_ring(n) ∈ CDRng)
Proof
Definitions occuring in Statement : 
int_mod_ring: int_mod_ring(n), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cdrng: CDRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_mod_ring: int_mod_ring(n), 
cdrng: CDRng, 
rng_car: |r|, 
pi1: fst(t), 
rng_eq: =b, 
pi2: snd(t), 
crng: CRng, 
rng_times: *, 
rng: Rng, 
rng_plus: +r, 
rng_zero: 0, 
rng_minus: -r, 
rng_one: 1, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
rng_sig: RngSig, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
bilinear: BiLinear(T;pl;tm), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
infix_ap: x f y, 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
inverse: Inverse(T;op;id;inv), 
and: P ∧ Q, 
cand: A c∧ B, 
squash: ↓T, 
prop: ℙ, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
comm: Comm(T;op), 
uiff: uiff(P;Q), 
eqfun_p: IsEqFun(T;eq), 
int_seg: {i..j-}
Lemmas referenced : 
nat_plus_wf, 
bool_wf, 
unit_wf2, 
add_wf_int_mod, 
bfalse_wf, 
modulus_wf_int_mod, 
eq_int_wf, 
int_mod_wf, 
minus_wf_int_mod, 
it_wf, 
int-subtype-int_mod, 
multiply_wf_int_mod, 
add_assoc_int_mod, 
add_zero_int_mod, 
add-commutes, 
add_inverse_int_mod, 
multiply_assoc_int_mod, 
multiply_one_int_mod, 
mul-commutes, 
multiply_distrib_int_mod, 
multiply_distrib2_int_mod, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_com_int_mod, 
subtype_rel_self, 
iff_weakening_equal, 
rng_one_wf, 
rng_times_wf, 
rng_minus_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
ring_p_wf, 
multiply_com_int_mod, 
comm_wf, 
assert_witness, 
assert_of_eq_int, 
assert_wf, 
iff_weakening_uiff, 
equal_int_mod_iff_modulus, 
int_subtype_base, 
rng_eq_wf, 
eqfun_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
dependent_set_memberEquality_alt, 
unionEquality, 
functionEquality, 
productEquality, 
unionIsType, 
functionIsType, 
productIsType, 
natural_numberEquality, 
closedConclusion, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
dependent_pairEquality_alt, 
inrEquality_alt, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_pairFormation, 
Error :memTop, 
productElimination, 
independent_pairEquality, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
isect_memberFormation, 
equalityIsType1, 
promote_hyp, 
intEquality, 
equalityIsType4
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (int\_mod\_ring(n)  \mmember{}  CDRng)
Date html generated:
2020_05_20-AM-08_20_46
Last ObjectModification:
2019_12_31-PM-06_31_25
Theory : general
Home
Index