Nuprl Lemma : l-ordered-insert-combine
∀T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀cmp:comparison(T). ∀f:T ⟶ T ⟶ T. ∀x:T.
  ((∀u,x,y:T.  (R[u;x] ⇒ R[x;y] ⇒ R[u;y]))
  ⇒ (∀u,x,y:T.  (((cmp x u) = 0 ∈ ℤ) ⇒ R[x;y] ⇒ R[u;y]))
  ⇒ (∀u,x,y:T.  (((cmp y u) = 0 ∈ ℤ) ⇒ R[x;y] ⇒ R[x;u]))
  ⇒ (∀u,x:T.  (((cmp x u) = 0 ∈ ℤ) ⇒ ((cmp u (f x u)) = 0 ∈ ℤ)))
  ⇒ (∀x,y:T.  (0 < cmp x y ⇒ R[x;y]))
  ⇒ (∀L:T List. (l-ordered(T;x,y.R[x;y];L) ⇒ l-ordered(T;x,y.R[x;y];insert-combine(cmp;f;x;L)))))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
insert-combine: insert-combine(cmp;f;x;l), 
comparison: comparison(T), 
list: T List, 
less_than: a < b, 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_apply: x[s], 
comparison: comparison(T), 
and: P ∧ Q, 
cand: A c∧ B, 
true: True, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
has-value: (a)↓, 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
list_induction, 
l-ordered_wf, 
insert-combine_wf, 
list_wf, 
all_wf, 
less_than_wf, 
equal-wf-T-base, 
comparison_wf, 
false_wf, 
true_wf, 
l-ordered-nil-true, 
nil_member, 
l_member_wf, 
nil_wf, 
l-ordered-cons, 
insert-combine-nil, 
value-type-has-value, 
int-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
cons_wf, 
insert-combine-cons, 
cons_member, 
and_wf, 
member-insert-combine, 
decidable__lt, 
minus-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
l_exists_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
natural_numberEquality, 
setElimination, 
intEquality, 
baseClosed, 
universeEquality, 
independent_pairFormation, 
voidElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
allFunctionality, 
productEquality, 
isect_memberEquality, 
voidEquality, 
callbyvalueReduce, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
int_eqEquality, 
computeAll, 
setEquality
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}cmp:comparison(T).  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}x:T.
    ((\mforall{}u,x,y:T.    (R[u;x]  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[u;y]))
    {}\mRightarrow{}  (\mforall{}u,x,y:T.    (((cmp  x  u)  =  0)  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[u;y]))
    {}\mRightarrow{}  (\mforall{}u,x,y:T.    (((cmp  y  u)  =  0)  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[x;u]))
    {}\mRightarrow{}  (\mforall{}u,x:T.    (((cmp  x  u)  =  0)  {}\mRightarrow{}  ((cmp  u  (f  x  u))  =  0)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    (0  <  cmp  x  y  {}\mRightarrow{}  R[x;y]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];insert-combine(cmp;f;x;L)))))
Date html generated:
2018_05_21-PM-07_38_01
Last ObjectModification:
2017_07_26-PM-05_12_17
Theory : general
Home
Index