Nuprl Lemma : prime-factors3
∀n:{2...}. (∃factors:{m:{2...}| prime(m)}  List [(n = Π(factors)  ∈ ℤ)])
 This theorem is one of  freek's list of 100 theorems 
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) , 
prime: prime(a), 
list: T List, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
iseg_product_rem: iseg_product_rem(i;j;k), 
subtract: n - m, 
divide: n ÷ m, 
it: ⋅, 
nil: [], 
cons: [a / b], 
so_apply: x[s1;s2], 
genrec-ap: genrec-ap, 
pi1: fst(t), 
prime-factors2, 
decidable__proper_divisor, 
decidable__le, 
decidable__equal_int, 
any: any x, 
iroot-property, 
divisor-in-range, 
decidable__and, 
decidable__not, 
decidable__less_than', 
decidable__int_equal, 
uniform-comp-nat-induction, 
decidable__lt, 
rem_bounds_1, 
int_seg_properties, 
decidable__implies, 
decidable__false, 
decidable__squash, 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
prime-factors2, 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
lifting-strict-less, 
lifting-strict-callbyvalue, 
lifting-strict-int_eq, 
lifting-strict-spread, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
istype-universe, 
decidable__proper_divisor, 
decidable__le, 
decidable__equal_int, 
iroot-property, 
divisor-in-range, 
decidable__and, 
decidable__not, 
decidable__less_than', 
decidable__int_equal, 
uniform-comp-nat-induction, 
decidable__lt, 
rem_bounds_1, 
int_seg_properties, 
decidable__implies, 
decidable__false, 
decidable__squash, 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
universeIsType, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation_alt
Latex:
\mforall{}n:\{2...\}.  (\mexists{}factors:\{m:\{2...\}|  prime(m)\}    List  [(n  =  \mPi{}(factors)  )])
 Date html generated: 
2019_10_15-AM-11_18_45
 Last ObjectModification: 
2019_06_26-PM-03_38_54
Theory : general
Home
Index