Nuprl Lemma : list-decomp-no_repeats
∀[T:Type]. ∀[l1,l2,l3,l4:T List]. ∀[x:T].
  ((l1 = l3 ∈ (T List)) ∧ (l2 = l4 ∈ (T List))) supposing 
     ((((l1 @ [x]) @ l2) = ((l3 @ [x]) @ l4) ∈ (T List)) and 
     no_repeats(T;(l1 @ [x]) @ l2))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
top: Top
, 
true: True
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
select: L[n]
, 
cons: [a / b]
, 
less_than: a < b
, 
no_repeats: no_repeats(T;l)
, 
nat: ℕ
, 
subtract: n - m
Lemmas referenced : 
equal_wf, 
list_wf, 
append_wf, 
cons_wf, 
nil_wf, 
no_repeats_wf, 
list_extensionality_iff, 
int_seg_subtype, 
length_wf, 
false_wf, 
le_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
length-singleton, 
length-append, 
length_of_cons_lemma, 
length_of_nil_lemma, 
int_seg_properties, 
decidable__le, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
non_neg_length, 
intformand_wf, 
int_formula_prop_and_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
select_append_front, 
select_append_back, 
subtype_base_sq, 
int_subtype_base, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__or, 
less_than_wf, 
intformor_wf, 
int_formula_prop_or_lemma, 
length_wf_nat, 
nat_properties, 
nat_wf, 
le_weakening2, 
select_wf, 
not_wf, 
add-member-int_seg1, 
subtract_wf, 
and_wf, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-add, 
zero-mul, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
applyEquality, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
intEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
dependent_set_memberEquality, 
instantiate, 
hyp_replacement, 
multiplyEquality, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2,l3,l4:T  List].  \mforall{}[x:T].
    ((l1  =  l3)  \mwedge{}  (l2  =  l4))  supposing 
          ((((l1  @  [x])  @  l2)  =  ((l3  @  [x])  @  l4))  and 
          no\_repeats(T;(l1  @  [x])  @  l2))
Date html generated:
2017_10_01-AM-08_39_11
Last ObjectModification:
2017_07_26-PM-04_27_23
Theory : list!
Home
Index