Nuprl Lemma : nil_interleaving2

[T:Type]. ∀L1,L:T List.  (interleaving(T;L1;[];L) ⇐⇒ L1 ∈ (T List))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  interleaving: interleaving(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] squash: T true: True guard: {T} uiff: uiff(P;Q) disjoint_sublists: disjoint_sublists(T;L1;L2;L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B less_than: a < b less_than': less_than'(a;b)
Lemmas referenced :  length_of_nil_lemma istype-nat length_wf_nat set_subtype_base le_wf istype-int int_subtype_base length_wf disjoint_sublists_wf nil_wf non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf squash_wf true_wf istype-universe list_wf subtype_rel_self iff_weakening_equal add-zero istype-le disjoint_sublists_sublist proper_sublist_length nat_properties decidable__equal_int add-is-int-iff intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma false_wf stuck-spread istype-base int_seg_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than id_increasing select_wf istype-void increasing_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid hypothesis isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin productIsType equalityIstype isectElimination hypothesisEquality applyEquality intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination addEquality sqequalBase equalitySymmetry universeIsType dependent_functionElimination because_Cache unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination dependent_set_memberEquality_alt imageElimination equalityTransitivity instantiate universeEquality imageMemberEquality baseClosed inhabitedIsType applyLambdaEquality setElimination rename pointwiseFunctionality promote_hyp baseApply closedConclusion functionIsType functionExtensionality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}L1,L:T  List.    (interleaving(T;L1;[];L)  \mLeftarrow{}{}\mRightarrow{}  L  =  L1)



Date html generated: 2020_05_20-AM-07_48_20
Last ObjectModification: 2020_01_22-PM-03_32_07

Theory : list!


Home Index