Nuprl Lemma : occurence_implies_interleaving

[T:Type]
  ∀L1,L2,L:T List. ∀f1:ℕ||L1|| ⟶ ℕ||L||. ∀f2:ℕ||L2|| ⟶ ℕ||L||.
    interleaving(T;L1;L2;L) supposing interleaving_occurence(T;L1;L2;L;f1;f2)


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) interleaving: interleaving(T;L1;L2;L) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  interleaving: interleaving(T;L1;L2;L) interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q increasing: increasing(f;k) int_seg: {i..j-} lelt: i ≤ j < k nat: guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b subtype_rel: A ⊆B subtract: m cand: c∧ B so_lambda: λ2x.t[x] squash: T so_apply: x[s] disjoint_sublists: disjoint_sublists(T;L1;L2;L)
Lemmas referenced :  member-less_than int_seg_wf length_wf nat_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf lelt_wf add-member-int_seg2 decidable__le subtract_wf intformle_wf int_formula_prop_le_lemma equal_wf nat_wf length_wf_nat add_nat_wf itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma le_wf increasing_wf all_wf select_wf int_seg_properties non_neg_length not_wf list_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis lambdaEquality dependent_functionElimination hypothesisEquality extract_by_obid isectElimination applyEquality functionExtensionality natural_numberEquality cumulativity setElimination rename dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache productEquality addEquality independent_functionElimination imageElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.  \mforall{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mforall{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.
        interleaving(T;L1;L2;L)  supposing  interleaving\_occurence(T;L1;L2;L;f1;f2)



Date html generated: 2017_10_01-AM-08_37_43
Last ObjectModification: 2017_07_26-PM-04_26_37

Theory : list!


Home Index