Nuprl Lemma : occurence_implies_interleaving
∀[T:Type]
  ∀L1,L2,L:T List. ∀f1:ℕ||L1|| ⟶ ℕ||L||. ∀f2:ℕ||L2|| ⟶ ℕ||L||.
    interleaving(T;L1;L2;L) supposing interleaving_occurence(T;L1;L2;L;f1;f2)
Proof
Definitions occuring in Statement : 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
interleaving: interleaving(T;L1;L2;L)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
interleaving: interleaving(T;L1;L2;L)
, 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
so_apply: x[s]
, 
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
Lemmas referenced : 
member-less_than, 
int_seg_wf, 
length_wf, 
nat_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
lelt_wf, 
add-member-int_seg2, 
decidable__le, 
subtract_wf, 
intformle_wf, 
int_formula_prop_le_lemma, 
equal_wf, 
nat_wf, 
length_wf_nat, 
add_nat_wf, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
increasing_wf, 
all_wf, 
select_wf, 
int_seg_properties, 
non_neg_length, 
not_wf, 
list_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
cumulativity, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
productEquality, 
addEquality, 
independent_functionElimination, 
imageElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.  \mforall{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mforall{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.
        interleaving(T;L1;L2;L)  supposing  interleaving\_occurence(T;L1;L2;L;f1;f2)
Date html generated:
2017_10_01-AM-08_37_43
Last ObjectModification:
2017_07_26-PM-04_26_37
Theory : list!
Home
Index