Nuprl Lemma : strong-law-of-large-numbers
∀p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]).
  (rv-iid(p;n.f[n];n.X[n])
  ⇒ (∀mean:ℚ
        nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s) - mean|))))) 
        supposing E(f[0];X[0]) = mean ∈ ℚ))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
rv-iid: rv-iid(p;n.f[n];i.X[i]), 
nullset: nullset(p;S), 
expectation: E(n;F), 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
qsum: Σa ≤ j < b. E[j], 
qabs: |r|, 
qle: r ≤ s, 
qless: r < s, 
qsub: r - s, 
qdiv: (r/s), 
qmul: r * s, 
rationals: ℚ, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
p-outcome: Outcome, 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
rv-const: a, 
rv-add: X + Y, 
qsub: r - s, 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt
Lemmas referenced : 
slln-lemma4, 
rv-add_wf, 
nat_wf, 
rv-const_wf, 
qmul_wf, 
int-subtype-rationals, 
rv-iid-add-const, 
equal_wf, 
squash_wf, 
true_wf, 
expectation-rv-add, 
iff_weakening_equal, 
rationals_wf, 
expectation_wf, 
false_wf, 
le_wf, 
rv-iid_wf, 
random-variable_wf, 
finite-prob-space_wf, 
equal-wf-T-base, 
qadd_wf, 
expectation-rv-const, 
qinverse_q, 
nullset-monotone, 
exists_wf, 
qless_wf, 
all_wf, 
less_than_wf, 
qle_wf, 
qabs_wf, 
qsum_wf, 
qdiv_wf, 
subtype_rel_set, 
int_nzero-rational, 
int_seg_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
p-outcome_wf, 
int_seg_wf, 
length_wf, 
qsub_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
prod_sum_l_q, 
sum_plus_q, 
qsum-const, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul_comm_qrng, 
qmul_ac_1_qrng, 
qmul-qdiv-cancel4, 
qmul_assoc
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
axiomEquality, 
rename, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
applyEquality, 
functionExtensionality, 
minusEquality, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
functionEquality, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
setElimination, 
intEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
promote_hyp, 
unionElimination
Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).
    (rv-iid(p;n.f[n];n.X[n])
    {}\mRightarrow{}  (\mforall{}mean:\mBbbQ{}
                nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}
                                            (0  <  q
                                            \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  |\mSigma{}0  \mleq{}  i  <  m.  (1/m)  *  (X[i]  s)  -  mean|))))) 
                supposing  E(f[0];X[0])  =  mean))
Date html generated:
2018_05_22-AM-00_43_15
Last ObjectModification:
2017_07_26-PM-07_01_00
Theory : randomness
Home
Index