Nuprl Lemma : qabs-of-nonneg
∀[q:ℚ]. |q| = q ∈ ℚ supposing 0 ≤ q
Proof
Definitions occuring in Statement :
qabs: |r|
,
qle: r ≤ s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
qabs: |r|
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
squash: ↓T
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
not: ¬A
Lemmas referenced :
valueall-type-has-valueall,
rationals_wf,
rationals-valueall-type,
evalall-reduce,
qle_wf,
int-subtype-rationals,
qpositive_wf,
bool_wf,
equal-wf-T-base,
assert_wf,
qless_wf,
bnot_wf,
not_wf,
equal_wf,
squash_wf,
true_wf,
qinv_id_q,
iff_weakening_equal,
qmul_wf,
uiff_transitivity,
eqtt_to_assert,
assert-qpositive,
iff_transitivity,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
qless_complement_qorder,
qle_antisymmetry
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
independent_isectElimination,
hypothesisEquality,
callbyvalueReduce,
natural_numberEquality,
applyEquality,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
baseClosed,
lambdaEquality,
imageElimination,
universeEquality,
imageMemberEquality,
productElimination,
independent_functionElimination,
hyp_replacement,
applyLambdaEquality,
minusEquality,
lambdaFormation,
unionElimination,
equalityElimination,
independent_pairFormation,
impliesFunctionality,
dependent_functionElimination
Latex:
\mforall{}[q:\mBbbQ{}]. |q| = q supposing 0 \mleq{} q
Date html generated:
2018_05_21-PM-11_52_43
Last ObjectModification:
2017_07_26-PM-06_45_12
Theory : rationals
Home
Index