Nuprl Lemma : qabs-of-positive
∀[q:ℚ]. |q| ~ q supposing 0 < q
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qless: r < s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
qabs: |r|, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce, 
qless_wf, 
int-subtype-rationals, 
qpositive_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert-qpositive, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
sqequalAxiom, 
natural_numberEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination
Latex:
\mforall{}[q:\mBbbQ{}].  |q|  \msim{}  q  supposing  0  <  q
Date html generated:
2018_05_21-PM-11_52_50
Last ObjectModification:
2017_07_26-PM-06_45_15
Theory : rationals
Home
Index