Nuprl Lemma : qexp-qdiv
∀[a,b:ℚ].  ∀[n:ℕ]. ((a/b) ↑ n = (a ↑ n/b ↑ n) ∈ ℚ) supposing ¬(b = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
cand: A c∧ B
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal_wf, 
squash_wf, 
true_wf, 
exp_zero_q, 
qdiv_wf, 
not_wf, 
equal-wf-T-base, 
rationals_wf, 
qexp-non-zero, 
false_wf, 
le_wf, 
iff_weakening_equal, 
int-subtype-rationals, 
qdiv-self, 
assert-qeq, 
equal-wf-base, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
qmul-not-zero, 
qexp_wf, 
qmul_wf, 
exp_unroll_q, 
qmul-qdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
baseClosed, 
dependent_set_memberEquality, 
imageMemberEquality, 
productElimination, 
unionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    \mforall{}[n:\mBbbN{}].  ((a/b)  \muparrow{}  n  =  (a  \muparrow{}  n/b  \muparrow{}  n))  supposing  \mneg{}(b  =  0)
Date html generated:
2018_05_22-AM-00_01_21
Last ObjectModification:
2017_07_26-PM-06_50_08
Theory : rationals
Home
Index