Nuprl Lemma : qmul-non-neg
∀a,b:ℚ.  ((a = 0 ∈ ℚ) ∨ (b = 0 ∈ ℚ) ∨ (0 < a ∧ 0 < b) ∨ (0 < -(a) ∧ 0 < -(b)) ⇐⇒ 0 ≤ (a * b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qless: r < s, 
qmul: r * s, 
rationals: ℚ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
minus: -n, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
true: True, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
squash: ↓T, 
uimplies: b supposing a, 
guard: {T}, 
decidable: Dec(P), 
cand: A c∧ B, 
false: False, 
not: ¬A
Lemmas referenced : 
or_wf, 
equal-wf-T-base, 
rationals_wf, 
qless_wf, 
int-subtype-rationals, 
qmul_wf, 
qle_wf, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
iff_weakening_equal, 
qmul-positive, 
qle_weakening_lt_qorder, 
decidable__equal_rationals, 
qless_trichot_qorder, 
qless_transitivity_2_qorder, 
qless_irreflexivity, 
qmul-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
productEquality, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
minusEquality, 
unionElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
equalityTransitivity, 
lambdaEquality, 
imageElimination, 
productElimination, 
imageMemberEquality, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
inlFormation, 
inrFormation, 
voidElimination
Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  =  0)  \mvee{}  (b  =  0)  \mvee{}  (0  <  a  \mwedge{}  0  <  b)  \mvee{}  (0  <  -(a)  \mwedge{}  0  <  -(b))  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  (a  *  b))
Date html generated:
2016_10_25-PM-00_07_19
Last ObjectModification:
2016_07_12-AM-07_50_28
Theory : rationals
Home
Index