Nuprl Lemma : qmul-non-neg
∀a,b:ℚ. ((a = 0 ∈ ℚ) ∨ (b = 0 ∈ ℚ) ∨ (0 < a ∧ 0 < b) ∨ (0 < -(a) ∧ 0 < -(b))
⇐⇒ 0 ≤ (a * b))
Proof
Definitions occuring in Statement :
qle: r ≤ s
,
qless: r < s
,
qmul: r * s
,
rationals: ℚ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
minus: -n
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
true: True
,
qle: r ≤ s
,
grp_leq: a ≤ b
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
infix_ap: x f y
,
grp_le: ≤b
,
pi1: fst(t)
,
pi2: snd(t)
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
qadd: r + s
,
qmul: r * s
,
btrue: tt
,
lt_int: i <z j
,
bfalse: ff
,
qeq: qeq(r;s)
,
eq_int: (i =z j)
,
squash: ↓T
,
uimplies: b supposing a
,
guard: {T}
,
decidable: Dec(P)
,
cand: A c∧ B
,
false: False
,
not: ¬A
Lemmas referenced :
or_wf,
equal-wf-T-base,
rationals_wf,
qless_wf,
int-subtype-rationals,
qmul_wf,
qle_wf,
squash_wf,
true_wf,
qmul_zero_qrng,
iff_weakening_equal,
qmul-positive,
qle_weakening_lt_qorder,
decidable__equal_rationals,
qless_trichot_qorder,
qless_transitivity_2_qorder,
qless_irreflexivity,
qmul-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
baseClosed,
because_Cache,
productEquality,
natural_numberEquality,
applyEquality,
sqequalRule,
minusEquality,
unionElimination,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
equalityTransitivity,
lambdaEquality,
imageElimination,
productElimination,
imageMemberEquality,
universeEquality,
independent_isectElimination,
independent_functionElimination,
dependent_functionElimination,
inlFormation,
inrFormation,
voidElimination
Latex:
\mforall{}a,b:\mBbbQ{}. ((a = 0) \mvee{} (b = 0) \mvee{} (0 < a \mwedge{} 0 < b) \mvee{} (0 < -(a) \mwedge{} 0 < -(b)) \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} (a * b))
Date html generated:
2016_10_25-PM-00_07_19
Last ObjectModification:
2016_07_12-AM-07_50_28
Theory : rationals
Home
Index