Nuprl Lemma : qneginv-positive
∀[v:ℚ]. 0 < (-1/v) supposing v < 0
Proof
Definitions occuring in Statement : 
qless: r < s, 
qdiv: (r/s), 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
guard: {T}, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
squash: ↓T, 
true: True, 
qdiv: (r/s), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qinv-negative, 
qless-minus, 
qdiv_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal-wf-T-base, 
rationals_wf, 
qless_wf, 
squash_wf, 
true_wf, 
qless_witness, 
assert-qeq, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
not_wf, 
qmul_wf, 
qinv_wf, 
equal_wf, 
qmul_one_qrng, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaFormation, 
equalitySymmetry, 
voidElimination, 
baseClosed, 
productElimination, 
hyp_replacement, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
imageMemberEquality, 
independent_functionElimination, 
isect_memberEquality, 
addLevel, 
impliesFunctionality, 
minusEquality, 
universeEquality
Latex:
\mforall{}[v:\mBbbQ{}].  0  <  (-1/v)  supposing  v  <  0
Date html generated:
2018_05_21-PM-11_58_33
Last ObjectModification:
2017_07_26-PM-06_48_10
Theory : rationals
Home
Index