Nuprl Lemma : qless-minus
∀[a,b:ℚ]. uiff(a < b;-(b) < -(a))
Proof
Definitions occuring in Statement :
qless: r < s
,
qmul: r * s
,
rationals: ℚ
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
minus: -n
,
natural_number: $n
Definitions unfolded in proof :
prop: ℙ
,
implies: P
⇒ Q
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
subtype_rel: A ⊆r B
,
has-valueall: has-valueall(a)
,
has-value: (a)↓
,
callbyvalueall: callbyvalueall,
uimplies: b supposing a
,
q_le: q_le(r;s)
,
infix_ap: x f y
,
pi1: fst(t)
,
grp_le: ≤b
,
qadd_grp: <ℚ+>
,
pi2: snd(t)
,
set_le: ≤b
,
set_blt: a <b b
,
dset_of_mon: g↓set
,
set_lt: a <p b
,
oset_of_ocmon: g↓oset
,
grp_lt: a < b
,
qless: r < s
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
qsub: r - s
,
all: ∀x:A. B[x]
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
squash: ↓T
,
true: True
,
or: P ∨ Q
,
false: False
,
not: ¬A
,
sq_stable: SqStable(P)
Lemmas referenced :
qless_wf,
int-subtype-rationals,
qless_witness,
qmul_wf,
evalall-reduce,
rationals-valueall-type,
rationals_wf,
valueall-type-has-valueall,
qadd_comm_q,
true_wf,
squash_wf,
assert_witness,
assert_of_bnot,
assert-qeq,
assert-qpositive,
assert_of_bor,
assert_of_band,
iff_weakening_uiff,
iff_transitivity,
bnot_wf,
qeq_wf2,
qsub_wf,
qpositive_wf,
bor_wf,
band_wf,
assert_wf,
uiff_wf,
qinv_inv_q,
iff_weakening_equal,
qadd_com,
not_wf,
equal_wf,
qadd_wf,
or_wf,
decidable__equal_rationals,
decidable__qless,
decidable__or,
sq_stable_from_decidable,
istype-universe,
subtype_rel_self
Rules used in proof :
equalitySymmetry,
equalityTransitivity,
independent_functionElimination,
isect_memberEquality,
independent_pairEquality,
productElimination,
applyEquality,
natural_numberEquality,
minusEquality,
because_Cache,
callbyvalueReduce,
hypothesisEquality,
independent_isectElimination,
hypothesis,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
levelHypothesis,
impliesFunctionality,
orFunctionality,
dependent_functionElimination,
addLevel,
universeEquality,
cumulativity,
baseClosed,
imageMemberEquality,
imageElimination,
lambdaEquality,
productEquality,
voidElimination,
lambdaFormation,
independent_pairFormation,
applyLambdaEquality,
hyp_replacement,
inrFormation,
inlFormation,
unionElimination,
lambdaEquality_alt,
universeIsType,
instantiate
Latex:
\mforall{}[a,b:\mBbbQ{}]. uiff(a < b;-(b) < -(a))
Date html generated:
2020_05_20-AM-09_16_31
Last ObjectModification:
2020_02_25-PM-00_11_59
Theory : rationals
Home
Index