Nuprl Lemma : qsum-const2
∀[a,b:ℤ]. ∀[q:ℚ].  (Σa ≤ i < b. q = (if a ≤z b then b - a else 0 fi  * q) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
qmul: r * s, 
rationals: ℚ, 
le_int: i ≤z j, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtract: n - m, 
squash: ↓T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
true: True, 
iff: P ⇐⇒ Q, 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
qrng: <ℚ+*>, 
rng_plus: +r, 
rng_zero: 0, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
infix_ap: x f y
Lemmas referenced : 
rationals_wf, 
le_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf, 
sum_shift_q, 
int_seg_wf, 
add-inverse, 
squash_wf, 
true_wf, 
qsum-const, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
iff_weakening_equal, 
intformless_wf, 
int_formula_prop_less_lemma, 
qmul_zero_qrng, 
bnot_of_lt_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
lambdaEquality, 
minusEquality, 
imageElimination, 
universeEquality, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[q:\mBbbQ{}].    (\mSigma{}a  \mleq{}  i  <  b.  q  =  (if  a  \mleq{}z  b  then  b  -  a  else  0  fi    *  q))
Date html generated:
2018_05_22-AM-00_02_09
Last ObjectModification:
2017_07_26-PM-06_50_37
Theory : rationals
Home
Index