Nuprl Lemma : qsum-int
∀[i,j:ℤ]. ∀[X:{i..j-} ⟶ ℤ].  (Σi ≤ x < j. X[x] ∈ ℤ)
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
qrng: <ℚ+*>, 
rng_plus: +r, 
rng_zero: 0, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
infix_ap: x f y
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
lt_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
infix_ap_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
itop_wf, 
lelt_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
qadd-add, 
decidable__lt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
addEquality, 
unionElimination, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
productElimination, 
equalityElimination, 
isect_memberFormation
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[X:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}i  \mleq{}  x  <  j.  X[x]  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_21-PM-11_59_36
Last ObjectModification:
2017_07_26-PM-06_48_50
Theory : rationals
Home
Index