Nuprl Lemma : rounded-numerator_wf
∀[r:ℚ]. ∀[k:ℕ+].  (rounded-numerator(r;k) ∈ ℤ)
Proof
Definitions occuring in Statement : 
rounded-numerator: rounded-numerator(r;k), 
rationals: ℚ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rationals: ℚ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
qeq: qeq(r;s), 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_nzero: ℤ-o, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
rounded-numerator: rounded-numerator(r;k), 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
btrue: tt, 
uiff: uiff(P;Q), 
nat_plus: ℕ+, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
b-union_wf, 
int_nzero_wf, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
equal_wf, 
equal-wf-base, 
nat_plus_wf, 
rationals_wf, 
valueall-type-has-valueall, 
bunion-valueall-type, 
int-valueall-type, 
product-valueall-type, 
set-valueall-type, 
nequal_wf, 
evalall-reduce, 
eqtt_to_assert, 
assert_of_eq_int, 
and_wf, 
subtype_base_sq, 
int_subtype_base, 
int_nzero_properties, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
div-cancel, 
mul_preserves_eq, 
mul_nzero, 
intformand_wf, 
int_formula_prop_and_lemma, 
mul-associates, 
mul-commutes, 
mul-swap, 
div-mul-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
intEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
productEquality, 
lambdaFormation, 
because_Cache, 
hypothesisEquality, 
baseClosed, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
independent_isectElimination, 
lambdaEquality, 
natural_numberEquality, 
callbyvalueReduce, 
imageElimination, 
unionElimination, 
equalityElimination, 
isintReduceTrue, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
multiplyEquality, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
divideEquality
Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (rounded-numerator(r;k)  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_21-PM-11_44_18
Last ObjectModification:
2017_07_26-PM-06_43_00
Theory : rationals
Home
Index