Nuprl Lemma : member_bs_tree_insert
∀[E:Type]
  ∀cmp:comparison(E). ∀x:E. ∀tr:ordered_bs_tree(E;cmp). ∀y:E.
    (y ∈ bs_tree_insert(cmp;x;tr) ⇐⇒ (y = x ∈ E) ∨ (y ∈ tr ∧ (¬((cmp x y) = 0 ∈ ℤ))))
Proof
Definitions occuring in Statement : 
bs_tree_insert: bs_tree_insert(cmp;x;tr), 
ordered_bs_tree: ordered_bs_tree(E;cmp), 
member_bs_tree: x ∈ tr, 
comparison: comparison(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
ordered_bs_tree: ordered_bs_tree(E;cmp), 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
comparison: comparison(T), 
so_apply: x[s], 
guard: {T}, 
member_bs_tree: x ∈ tr, 
bs_tree_insert: bs_tree_insert(cmp;x;tr), 
bst_null: bst_null(), 
bs_tree_ind: bs_tree_ind, 
bst_leaf: bst_leaf(value), 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
false: False, 
rev_implies: P ⇐ Q, 
has-value: (a)↓, 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
not: ¬A, 
bst_node: bst_node(left;value;right), 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
bs_tree_ordered: bs_tree_ordered(E;cmp;tr), 
trans: Trans(T;x,y.E[x; y]), 
decidable: Dec(P)
Lemmas referenced : 
sq_stable__bs_tree_ordered, 
bs_tree-induction, 
bs_tree_ordered_wf, 
all_wf, 
iff_wf, 
member_bs_tree_wf, 
bs_tree_insert_wf1, 
or_wf, 
equal_wf, 
not_wf, 
equal-wf-T-base, 
bs_tree_wf, 
ordered_bs_tree_wf, 
comparison_wf, 
false_wf, 
bst_null_wf, 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
squash_wf, 
true_wf, 
comparison-anti, 
iff_weakening_equal, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bst_leaf_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
bst_node_wf, 
strict-comparison-trans, 
decidable__lt, 
decidable__equal_int, 
minus-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
functionEquality, 
cumulativity, 
productEquality, 
intEquality, 
applyEquality, 
universeEquality, 
independent_pairFormation, 
inlFormation, 
equalitySymmetry, 
voidElimination, 
unionElimination, 
productElimination, 
callbyvalueReduce, 
independent_isectElimination, 
natural_numberEquality, 
equalityElimination, 
equalityTransitivity, 
lessCases, 
sqequalAxiom, 
isect_memberEquality, 
voidEquality, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
promote_hyp, 
instantiate, 
addLevel, 
orFunctionality, 
impliesFunctionality, 
minusEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[E:Type]
    \mforall{}cmp:comparison(E).  \mforall{}x:E.  \mforall{}tr:ordered\_bs\_tree(E;cmp).  \mforall{}y:E.
        (y  \mmember{}  bs\_tree\_insert(cmp;x;tr)  \mLeftarrow{}{}\mRightarrow{}  (y  =  x)  \mvee{}  (y  \mmember{}  tr  \mwedge{}  (\mneg{}((cmp  x  y)  =  0))))
 Date html generated: 
2017_10_01-AM-08_31_10
 Last ObjectModification: 
2017_07_26-PM-04_24_59
Theory : tree_1
Home
Index