Nuprl Lemma : mk_applies_split

[F,G:Top]. ∀[n,m:ℕ].  (mk_applies(F;G;m n) mk_applies(mk_applies(F;G;m);λk.(G (m k));n))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: top: Top mk_applies: mk_applies(F;G;m) implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  add-commutes primrec_add top_wf int_seg_wf nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int primrec-unroll
Rules used in proof :  sqequalSubstitution cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin setElimination rename hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality sqequalRule because_Cache functionExtensionality natural_numberEquality addEquality isect_memberFormation sqequalAxiom intWeakElimination lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll independent_functionElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[F,G:Top].  \mforall{}[n,m:\mBbbN{}].    (mk\_applies(F;G;m  +  n)  \msim{}  mk\_applies(mk\_applies(F;G;m);\mlambda{}k.(G  (m  +  k));n))



Date html generated: 2017_10_01-AM-08_40_18
Last ObjectModification: 2017_07_26-PM-04_28_00

Theory : untyped!computation


Home Index