Nuprl Lemma : primrec_add
∀[T:Type]. ∀[n,m:ℕ]. ∀[b:T]. ∀[c:ℕn + m ⟶ T ⟶ T].  (primrec(n + m;b;c) ~ primrec(n;primrec(m;b;c);λi,t. (c (i + m) t))\000C)
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
primrec0_lemma, 
zero-add, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtype_rel_dep_function, 
subtype_rel_sets, 
and_wf, 
le_wf, 
decidable__lt, 
not-lt-2, 
nat_wf, 
le-add-cancel2, 
subtype_rel_self, 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
uiff_transitivity, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
bnot_wf, 
not_wf, 
general_arith_equation1, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
mul-associates, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomSqEquality, 
functionEquality, 
addEquality, 
because_Cache, 
voidEquality, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
unionElimination, 
independent_pairFormation, 
productElimination, 
applyEquality, 
intEquality, 
minusEquality, 
setEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
universeEquality, 
multiplyEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[b:T].  \mforall{}[c:\mBbbN{}n  +  m  {}\mrightarrow{}  T  {}\mrightarrow{}  T].
    (primrec(n  +  m;b;c)  \msim{}  primrec(n;primrec(m;b;c);\mlambda{}i,t.  (c  (i  +  m)  t)))
Date html generated:
2019_06_20-AM-11_27_47
Last ObjectModification:
2018_09_26-AM-10_58_09
Theory : call!by!value_2
Home
Index