(8steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
prime
factorization
exists
1
2
1
1.
n
: {1...}
2.
g
: {2..(
n
+1)
}
3.
n
=
{2..
n
+1
}(
g
)
h
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
h
) & is_prime_factorization(2; (
n
+1);
h
)
By:
Inst:
Thm*
k
:{2...},
n
:
,
g
:({2..
k
}
).
Thm*
2
n
<
k
+1
Thm*
Thm*
(
i
:{2..
k
}.
n
i
0<
g
(
i
)
prime(
i
))
Thm*
Thm*
(
h
:({2..
k
}
).
Thm* (
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
))
Using:[
n
+1 |
n
+1 |
g
]
Generated subgoal:
1
4.
h
:({2..(
n
+1)
}
).
4.
{2..
n
+1
}(
g
) =
{2..
n
+1
}(
h
) & is_prime_factorization(2; (
n
+1);
h
)
h
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
h
) & is_prime_factorization(2; (
n
+1);
h
)
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(8steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc