(8steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: prime factorization exists 1 2 1

1. n : {1...}
2. g : {2..(n+1)}
3. n = {2..n+1}(g)
  h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)


By: Inst: 
Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
Using:[n+1 | n+1 | g]


Generated subgoal:

1 4. h:({2..(n+1)}). 
4. {2..n+1}(g) = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
  h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)

1 step

About:
intnatural_numberaddless_thanapplyfunction
equalimpliesandall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(8steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc