is mentioned by
[parallel_conjunct_imp] | |
[invfuns_are_inj] | |
[invfuns_are_surj] | |
Thm* (1-1-Corr x:A,y:B. R(x;y)) Thm* Thm* (f:(AB), g:(BA). Thm* (InvFuns(A;B;f;g) & (x:A, y:B. R(x;y) y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[card_subset_vs_and] | |
Thm* ((A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* (& (x:A. R(x;x)) Thm* (& Finite(A)) | [no_finite_model] |
Thm* (A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* Thm* (k:. f:(kA). i,j:k. i<j R(f(i);f(j))) | [no_finite_model_lemma] |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
[pigeon_hole] | |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Bij({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k } Thm* (& Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(i) {v:| Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(m) {v:| Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
[Dedekind_infinite] | |
Def == f:(AA'), g:(A'A), F:(x:AB(x)B'(f(x))), G:(x:AB'(f(x))B(x)). Def == InvFuns(A;A';f;g) & (u:A. InvFuns(B(u);B'(f(u));F(u);G(u))) | [one_one_corr_fams] |
[inv_funs_2] | |
Def == x,x':A, y,y':B. R(x;y) & R(x';y') (x = x' y = y') | [rel_1_1_b] |
[rel_1_1] | |
[is_one_one_corr_rel] |
In prior sections: core int 1 bool 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops rel 1
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html