is mentioned by
[is_list_mem_split] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[set_functionality_wrt_one_one_corr_n_pred] | |
[set_functionality_wrt_one_one_corr_n_pred2] | |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
[bij_iff_is_1_1_corr] | |
[fin_card_vs_nat_eq] | |
[nonfin_eqv_unb_inf_iff_negnegelim] | |
[bij_iff_1_1_corr_version2a] | |
[bij_iff_1_1_corr_version2] | |
[one_one_corr_2_functionality_wrt_one_one_corr] | |
[inhabited_functionality_wrt_one_one_corr] | |
[iff_weakening_wrt_one_one_corr_2] | |
Thm* (1-1-Corr x:A,y:B. R(x;y)) Thm* Thm* (f:(AB), g:(BA). Thm* (InvFuns(A;B;f;g) & (x:A, y:B. R(x;y) y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
[one_one_corr_iff_one_one_corr_2] | |
[inv_funs_iff_inv_funs_2] | |
[inv_pair_iff_ooc] | |
[decidable_vs_unique_nsub2] | |
[card0_iff_uninhabited] | |
[card1_iff_inhabited_uniquely] | |
[injtype_vs_inj] | |
[same_range_sep] | |
Def == x,x':A, y,y':B. R(x;y) & R(x';y') (x = x' y = y') | [rel_1_1_b] |
[rel_1_1] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html