DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  P  Q == (P  Q) & (P  Q)

is mentioned by

Thm*  x,a:Ays:A List. (x  a.ys x = a  (x  ys)[is_list_mem_split]
Thm*  f:(a2). 
Thm*  (i:aP(i f(i) = 1  2)  ({x:aP(x) } ~ (Msize(f)))
[card_st_vs_msize]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } ~ {x:AB'(x) })[set_functionality_wrt_one_one_corr_n_pred]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } ~ {x:AB'(x) })[set_functionality_wrt_one_one_corr_n_pred2]
Thm*  Bij(AA'f)
Thm*  
Thm*  (x:AB(x B'(f(x)))  ({x:AB(x) } ~ {x:A'B'(x) })
[card_settype_sq]
Thm*  Bij(AA'f)
Thm*  
Thm*  (x:AB(x B'(f(x)))  ({x:AB(x) } ~ {x:A'B'(x) })
[card_settype]
Thm*  Bij(ABf f is 1-1 corr[bij_iff_is_1_1_corr]
Thm*  a,b:. (a ~ b a = b[fin_card_vs_nat_eq]
Thm*  (A:Type. Finite(A Unbounded(A))  (P:Prop. P  P)[nonfin_eqv_unb_inf_iff_negnegelim]
Thm*  (f:(AB). Bij(ABf))  (B ~ A)[bij_iff_1_1_corr_version2a]
Thm*  (f:(AB). Bij(ABf))  (A ~ B)[bij_iff_1_1_corr_version2]
Thm*  (A ~ A' (B ~ B' ((A ~ B (A' ~ B'))[one_one_corr_2_functionality_wrt_one_one_corr]
Thm*  (A ~ B ((A (B))[inhabited_functionality_wrt_one_one_corr]
Thm*  (A ~ B (A  B)[iff_weakening_wrt_one_one_corr_2]
Thm*  R:(ABProp). 
Thm*  (1-1-Corr x:A,y:BR(x;y))
Thm*  
Thm*  (f:(AB), g:(BA).
Thm*  (InvFuns(A;B;f;g) & (x:Ay:BR(x;y y = f(x) & x = g(y)))
[one_one_corr_rel_vs_invfuns]
Thm*  A:Type, B:Type. (A ~~ B (A ~ B)[one_one_corr_iff_one_one_corr_2]
Thm*  InvFuns(ABfg InvFuns(A;B;f;g)[inv_funs_iff_inv_funs_2]
Thm*  ((AB))  (A ~ B)[inv_pair_iff_ooc]
Thm*  Dec(P (!i:2. if i=0 P else P fi)[decidable_vs_unique_nsub2]
Thm*  (A ~ 0)  (A)[card0_iff_uninhabited]
Thm*  (A ~ 1)  (!A)[card1_iff_inhabited_uniquely]
Thm*  ((A inj B))  (f:(AB). Inj(ABf))[injtype_vs_inj]
Def  same_range_sep(AB) == f,gj:B. (i:Af(i) = j (i:Ag(i) = j)[same_range_sep]
Def  1-1 xA,yBR(x;y)
Def  == x,x':Ay,y':BR(x;y) & R(x';y' (x = x'  y = y')
[rel_1_1_b]
Def  R is 1-1 == x,x':Ay,y':BR(x,y) & R(x',y' (x = x'  y = y')[rel_1_1]

In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

DiscreteMath Sections DiscrMathExt Doc